LOCAL COHOMOLOGY MODULES WHICH ARE SUPPORTED ONLY AT FINITELY MANY MAXIMAL IDEALS
نویسندگان
چکیده
منابع مشابه
Ideals with Maximal Local Cohomology Modules
This paper finds its motivation in the pursuit of ideals whose local cohomology modules have maximal Hilbert functions. In [8], [9] we proved that the lexicographic (resp. squarefree lexicographic) ideal of a family of graded (resp. squarefree) ideals with assigned Hilbert function provides sharp upper bounds for the local cohomology modules of any of the ideals of the family. Moreover these bo...
متن کاملThere are only finitely many Diophantine quintuples
A set of m positive integers is called a Diophantine m-tuple if the product of its any two distinct elements increased by 1 is a perfect square. Diophantus found a set of four positive rationals with the above property. The first Diophantine quadruple was found by Fermat (the set {1, 3, 8, 120}). Baker and Davenport proved that this particular quadruple cannot be extended to a Diophantine quint...
متن کاملMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملOn finitely generated modules whose first nonzero Fitting ideals are regular
A finitely generated $R$-module is said to be a module of type ($F_r$) if its $(r-1)$-th Fitting ideal is the zero ideal and its $r$-th Fitting ideal is a regular ideal. Let $R$ be a commutative ring and $N$ be a submodule of $R^n$ which is generated by columns of a matrix $A=(a_{ij})$ with $a_{ij}in R$ for all $1leq ileq n$, $jin Lambda$, where $Lambda $ is a (possibly infinite) index set. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2010
ISSN: 0304-9914
DOI: 10.4134/jkms.2010.47.3.633